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wa Szymańskaa, Michał J. Markuszewskia,b,∗, Marcin Markuszewskic, Roman Kaliszana

Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416 Gdańsk, Poland
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a b s t r a c t

Metabolic profiles of nucleosides studied on the level of urine are closely related to the pathophysiolog-
ical status of the organism. Posttranscriptional modifications of RNA (mostly tRNA) in cell nucleus are
responsible for change of nucleoside levels during malignant disease. In this paper, 256 metabolite pro-
files from 160 urogenital tract cancer patients and 96 healthy controls, composed of 19 nucleosides were
collected and studied with the application of such an approach. This approach comprised of the analysis of
urine extracts and the investigation of collected nucleoside and modified nucleoside profiles by advanced
statistical data processing tools such as principal component analysis (PCA), hierarchical cluster analysis
(HCA), K-Nearest Neighbor method (kNN) and partial least squares-discriminant analysis with proba-
bilistic function (p-PLS-DA). It has been shown that alterations of metabolite profiles in cancer diseases
are mainly expressed by the fold change of the urine levels of most nucleosides. In addition, observed
rogenital tract cancer
apillary electrophoresis

metabolite-to-metabolite ratios differ in urogenital cancer patients compared to healthy controls. The
obtained relationships between urinary nucleoside profiles and the presence of cancer diseases have
been evaluated. Discrimination of the cancer patients and the non-cancer healthy subjects is with 76.5%
sensitivity and 80.2% specificity. The presented results prove the usefulness of the metabolomic approach
in studying urinary nucleoside profiles with high diagnostic potency in urogenital cancer diseases. Pro-
files of urinary nucleosides might be employed as a reliable and convenient tool in the diagnostics of
urogenital tract cancer diseases.
. Introduction

Part of the difficulty in understanding cancer diseases arises not
nly from unknowns regarding what triggers its onset and progres-
ion (genome, environmental factors), but also due to uncertainty
egarding how best to detect early biological signals that are predic-
ive of subsequent phenotypic changes. The enhanced sensitivity of

etabolomics to capture subtle changes in the multiple metabolic
aths and cellular levels of metabolites holds promise to identify

ritical determinants of cancer risk and tumor behavior [1]. The
dentification of proper biomarkers in biological fluids continues
o be a major obstacle for developing effective strategies for cancer
iagnosis and therapy.
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Monitoring fluctuations in certain metabolite levels is a way to
detect early stages in carcinogenesis, predict the aggressiveness
of a tumor and/or monitor the response to an intervention [2].
Quantitative analysis of metabolomic techniques, combined with
advanced bioinformatic approaches, could enable the development
of a profile that characterizes early changes of specific cell or organ
functions [3]. Thus, metabolomic approaches are likely to be used
to advance research in cancer biology by developing biomarkers
which will be useful for distinguishing between precancerous and
cancerous states. Understanding the metabolomic changes asso-
ciated with the shifted balance among growth, stasis, apoptosis
and differentiation that characterize tumors remains an impor-
tant undertaking that will advance early detection. These are for
example polyamines involved in cell and tissue proliferation [4,5],
nucleosides and modified nucleosides involved in the turnover of

ribonucleic acids [6] and pteridines involved in the basic immuno-
logical response [7]. The mentioned groups of metabolites have
already been investigated in several types of malignant diseases
such as leukemia, breast cancer, thyroid cancer, uterine cervical
cancer and liver cancer diseases [4,8–11].
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A challenge in identifying informative metabolic biomarkers
s that there are probably few, if any, metabolites that will be
onsistently predictive across all cancers. However, it is possi-
le that there are limited numbers of metabolomic processes for
ny given tumor types; thus, following the metabolomic profiles,
ather than individual metabolites, may aid the early diagnosis of
isease.

It has already been established that levels of urinary nucleo-
ides might be changed in malignant diseases, such as leukemia
r liver cancer [6,12]. However, it is still not known in what
xtent urinary nucleoside profiles alter in urogenital cancer
iseases and what is the character and strength of these
lterations.

In 1977 Gehrke et al. [13] published the first article about
etermination of urinary nucleosides. They successfully deter-
ined six nucleosides from healthy and cancer urine samples

sing an affinity chromatography with a bounded boronate acid.
ince then different techniques have been applied for identification
nd quantification of nucleosides using not only high-performance
iquid chromatography (HPLC) [14,15], but also capillary elec-
rophoresis (CE) in conjunction with various types of detectors
4,16–18].

Electromigration techniques are assumed as the most rapidly
rowing analytical techniques that have had a great impact in
iomedical research, clinical and forensic practices in the last
ecade [19]. The electromigration technique is a serious alternative
o chromatographic one and has been used in analytical chemistry
ince early 1980s of the last century. Compared to other sensitive
nalytical techniques, such as HPLC, that have been extensively
sed for analysis of biologically active substances in clinical rou-
ines, electromigration technique like CE holds a number of distinct
dvantages such as a very small sample volume (nL) necessary
or a single analysis, rapid analysis, high resolution and relatively
ow costs. CE play an important role in analytical chemistry as a
ery useful technique for the analysis of numerous endogenous
nd exogenous substances presented in biological fluids. There is
ne main restriction of electromigration techniques with photo-
etric detection that is a higher limits of detection of nucleosides

nd weaker selectivity in case of complex biological samples. How-
ver, this restriction is possible to be eliminated by using different
ypes of detection, e.g. mass spectrometry (MS) detection. The use
f CE-MS or CE-MS/MS systems became more and more routine in
ioanalysis nowadays.

When CE is coupled with MS, there are two main advantages.
he first one is that the molecular mass of analyte can be known
nd simultaneously the nucleosides can be temporarily identified
y comparing the molecular mass with data in the literature and
onfirmed through other technique such as MS/MS. The second
dvantage is that the coexisting effluents from CE separation can be
eparated by MS if they have different molecular mass. Thus, when
ompared with CE, CE-MS is preferred for developing an extensive
etabolic profile.
The goal of our studies was to compare and evaluate differences

etween urinary nucleoside profiles from patients with diagnosed
rogenital tract cancer and healthy controls with no diagnosed can-
er disease. To fulfill this goal, a large-scale metabolomic study was
erformed consisting of five consecutive steps [20]. It included pro-
les of nucleosides and modified nucleosides taken from the urine
amples of 256 healthy and cancer patients. High diversity among
he studied population of patients ensured different cancer loca-
ions (including bladder, prostate, kidney and testis cancer) and

ifferent disease malignancy aimed at finding one set of metabo-

ites valid for all urogenital tract cancer diseases. This could be
f utmost assistance in the development of a universal and non-
nvasive diagnostic method applicable to urogenital tract cancer
iseases.
d Biomedical Analysis 53 (2010) 1305–1312

2. Materials and methods

Chemicals and preparation of standard solutions Reference
standards for 13 nucleosides, i.e. uridine, pseudouridine, cyti-
dine, 5-methyluridine, inosine, N4-acetylcytidine, guanosine,
adenosine, N2,N2-dimethylguanosine, N6-methyladenosine, N1-
methyladenosine, xanthosine, and 8-bromoguanosine (internal
standard) and creatinine were purchased from Sigma–Aldrich (St.
Louis, MO, USA) Phosphoric acid, borax (sodium tetraborate dec-
ahydrate), sodium dodecyl sulfate 98.5% and ammonium acetate
were from Sigma (Sigma–Aldrich, St. Louis, MO, USA). Formic
acid came from Lancaster Synthesis UK (Newgate, Lancashire, UK).
Sodium hydroxide, methanol and ammonia were obtained from
POCH (Gliwice, Poland). The Affi-gel 601, used as the stationary
phase for the extraction of nucleosides from urine,was purchased
from Bio-Rad (Hercules, CA, USA). Reversed osmosed deionised
water for the preparation of the standard solution, the background
electrolyte and other solutions were from MiliQ-Plus system (Mil-
lipore, Vienna, Austria).

The 10 mM stock solutions of all standards were prepared in
deionised water (except the stock solution of guanosine, which was
prepared in 0.1 M NaOH), and kept frozen at −34 ◦C. The working
standard solutions were prepared by dilution of the stock solutions
with deionised water to concentrations in the range of 5–5000 �M.

2.1. Study population

Urine samples were collected from 96 healthy controls (with
no diagnosed cancer disease) and 160 cancer patients from the
Department of Urology at the Medical University of Gdańsk,
Gdańsk, Poland. The studies were performed following the patients’
informed consents in accordance with the principles embodied in
the Declaration of Helsinki and the applied procedure was approved
by the Ethical Committee of the Medical University of Gdańsk.

The group of healthy controls (age range 19–86; 60 women and
36 men) consisted of participants without diagnosed urogenital
cancer diseases or any other malignant or infectious disease at the
time of sample collection. The group of cancer patients (age range
21–92; 40 women and 120 men) included subjects with a known
diagnosis of bladder cancer (95 patients, which counts for 59.4% of
total cancer cases), kidney cancer (32 patients, 20%), prostate cancer
(16 patients, 10%), testis cancer (7 patients, 4.4%) and other malig-
nant diseases of the urogenital tract (10 patients, 6.3%). Cancer
patients had various stages of malignant diseases and underwent
different therapies (surgery, chemotherapy, radiotherapy). In the
case of surgical operations, the urine sample was always collected
a day before surgery.

2.2. Urinary nucleoside profiling

Urine samples were prepared by a validated procedure consist-
ing of a selective solid phase extraction (SPE) step followed by
the freeze-drying of extract solutions [20]. After sample prepa-
ration, nucleoside profiles were assayed by an optimized and
validated capillary electrophoretic (CE) method [20]. All urine
nucleoside profiles were obtained with a Beckman Coulter P/ACE
MDQ system (Beckman Instruments, Fullerton, CA, USA), fit-
ted with a diode array UV-absorbance detector (190–600 nm),
a temperature-controlled capillary compartment (liquid-cooled)
and a temperature-controlled autosampler (air-cooled). The
applied electrophoretic conditions were as follows: 100 mM borate,

72.5 mM phosphate, 160 mM SDS, pH 6.7; 25 kV voltage, 30 ◦C tem-
perature during analysis; injection 5 s × 0.5 psi; capillary: untreated
fused silica 70 cm length to detector, 50 �m I.D.

In the measurement design the total set of samples (256) was
divided into two subsets: A (149 samples) and B (107 samples).
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ach subset was randomly divided into smaller groups (7–11 sam-
les), which were analyzed in subsequent measurement days. The
ucleoside profiles of each sample were measured by CE twice and
he mean value of the two measurements was used in further data
rocessing. The performance of the CE system was monitored dur-

ng measurements by the analysis of nucleoside profiles in quality
ontrol samples (QC samples were obtained by the pooling of 30
andomly selected urine extracts).

.3. Data preparation and pretreatment

The levels of 19 metabolites were determined on the basis of the
atio of the areas of metabolite peak and the internal standard. Cal-
bration curves were obtained separately for samples from subsets

and B. The relative concentrations of unidentified metabolites
seven metabolites included in the profiles) were calculated by
se of calibration curves obtained for metabolites with similar
igration times. The urinary nucleoside profiles obtained were

ormalized with the urinary creatinine level measured for each
erson. The missing values were replaced by the minimal concen-
ration observed.

.4. Univariate analysis of urinary nucleoside profiles

Statistical calculations were performed with the tools and tests
vailable within STATISTICA 8.0 software (Statsoft Inc., Tulsa, OK,
SA). Alterations between the profiles obtained for different groups
f patients (cancer patients vs. controls, less than 40-year-old
ontrols vs. more than 40-year-old controls and women controls
s. men controls) were evaluated by the comparison of ranges,
edians and mean values of metabolite levels, and by the U-
ann–Whitney test (p < 0.01). The U-Mann–Whitney test was

hosen because of the lack of normal distribution (demonstrated
y Shaphiro-Wilk and Lilliefors tests). Additionally, when compar-

ng cancer patients with controls, the percent of cancer patients
ith the metabolite level elevated more than the mean level plus

wo standard deviations was calculated.

.5. Principal component analysis (PCA)

The PCA was performed within the Matlab environment (Matlab
.0, Mathworks, Natick, MA, USA). Before the analysis the dataset
256 profiles × 19 metabolite levels) was autoscaled. The PCA was
pplied to check the dataset structure and assess the variability of
he profiles belonging to groups of cancer patients vs. controls.

.6. Hierarchical cluster analysis (HCA)

The HCA was performed employing STATISTICA tools. The Ward
ethod, as the cluster method, and 1 − r (the Pearson correlation

oefficient) distance, as the similarity measure, were applied to
ssess the similarity of variables.

.7. Probabilistic partial least squares-discriminant analysis
p-PLS-DA)

The p-PLS-DA, which is based on boosting the PLS method
21], available in the Matlab environment, was used to measure
he strength of the relationship between urinary nucleoside pro-
les and the presence of urogenital tract cancer. For that purpose,
ata after autoscalation was used. In the selection of a calibra-

ion set (n = 160 profiles; 80 cancer vs. 80 controls) and a test
et (n = 96 profiles; 80 cancer vs. 16 controls) three sample selec-
ion algorithms, i.e. random selection (performed 10 times and
he mean classification results were included for further consid-
ration), the Kennard-Stone algorithm [22–24], were compared.
Biomedical Analysis 53 (2010) 1305–1312 1307

The duplex algorithm was selected as the most convenient. During
p-PLS-DA model calibration the Monte-Carlo cross-validation was
used. The discriminant model was established for all the variables
considered and then less discriminatory variables were eliminated
by the backward elimination procedure based on the absolute
regression coefficients and model complexity (to get the smallest
possible number of components), model parameters such as the
root mean square error of cross-validation (RMSECV) and model
predictability. To assess model predictability, the percent of correct
classifications was calculated for the test set and for the calibration
set as well as for the cancer patients set (model selectivity) and the
controls set (model specificity).

2.8. k-Nearest Neighbor (kNN) analysis

The kNN analysis was done within the Matlab environment
on autoscaled data as a nonlinear alternative to p-PLS-DA. The
same calibration and test sets as in p-PLS-DA were used. In kNN
model calibration, the leave-one-out cross-validation (LOOCV) was
implemented to select the optimal number of neighbors and dis-
criminatory variables to be included in the model. Predictability of
the model was assessed by the percent of correct classifications for
the calibration and the test sets.

3. Results

3.1. Study strategy

This study comprised of five consecutive steps. At first (step 1),
nucleoside profiles were obtained for 256 subjects including 160
urogenital tract cancer patients and 96 non-cancer controls with
reliable analytical procedure (Fig. 1). Secondly (step 2), changes in
individual nucleosides in urogential cancer disease were evaluated
by univariate analysis. Thirdly (step 3), profiles of 19 nucleosides
from cancer and healthy controls were compared by unsupervised
pattern recognition methods such as PCA and HCA. Next (step 4),
nucleoside profiles were explored by supervised pattern recogni-
tion factors to assess the strength of the relationship of metabolite
profiles with cancer presence. Additionally, the relationship of data
analysis method factors such as disease stage, age and gender of the
tested population were explored in the second, third and fourth
step of data analysis. Finally (step 5), metabolite-to-metabolite
relations within individual nucleoside profiles were assessed by
the data analysis of nucleoside profiles normalized with the total
peak area. All the mentioned steps 2–4 are described below.

An important issue in this and other studies with many
biological samples and capillary electrophoretic methods is repro-
ducibility of results. In presented strategy in step 1 areas of selected
electrophoretic peaks are taken as quantitative information about
nucleoside levels (Fig. 1). Electrophoretic peaks included in analy-
sis were selected on the basis of results of validation studies where
a set of electrophoretic peaks with acceptable reproducibility of
migration times and peak areas (RSD <15%) were determined. An
alternative pretreatment of electrophoretic profiles will be denos-
ing and alignment. Afterwards whole nucleoside electrophoretic
profiles could be used in further data analysis as described previ-
ously [25].

3.2. Univariate data analysis of urinary nucleoside profiles

First, individual differences in the profiles’ metabolite levels

between the two groups were evaluated by a comparison of sta-
tistical parameters and after performing the U-Mann–Whitney test
(Table 1). The mean and median levels of each of the 19 metabolites
studied were elevated in the urogenital tract cancer group in com-
parison to the control group. The observed differences between the
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Fig. 1. Single result of the capillary electrophoretic analysis of a urinary nucleoside profile from a urine extract. Peaks: 1 – pseudouridine (pU), 2 – dihydrouridine (*dhU,
measured at 214 nm), 3 – uridine (U), 4 – cytidine (C), 5 – 5-methyluridine (5mU), 6 – unidentified metabolite *1 (*1), 7 – inosine (I), 8 – unidentified metabolite *2 (*2),
9 ), 12
* ), 17 –
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– N4-acetylcytidine (acC), 10 – guanosine (G), 11 – unidentified metabolite *3 (*3
5 (*5), 15 – unidentified metabolite *6 (*6), 16 – N2,N2-dimethylguanosine (dmG
apillary electrophoretic conditions are: 100 mM borate, 72.5 mM phosphate, 160 m
apillary: untreated fused silica 70 cm length to detector, 50 �m I.D.

roups are statistically significant (p < 0.01) for most metabolites
excluding cytidine and adenosine). For 13 compounds, alterna-
ions are significant at the p-level less than 0.0001. The fold change
f the group mean values is apparent and is between 1.5 and 2.0
or each metabolite (Fig. 2).

Also, the ranges of metabolite levels differ between the cancer
nd non-cancer groups. Ranges obtained for the cancer group are
ider and comprise the ranges for the non-cancer group, which is
ue to dissimilar group diversity. The greater diversity of cancer

roup nucleoside profiles is probably the impact of some addi-
ional factors, like different type, stage and malignancy of the cancer
iseases.

Next, on the basis of mean values obtained for the non-cancer
roup, the cutoff level could be set (cutoff level = mean + two stan-

able 1
ndividual nucleoside/creatinine ratios [�mol nucleoside/mM creatinine] in the urine of u

Metabolite Non-cancer controls (n = 96) Urogenital cancer p

Range Mean ± S.D. Median Range

pU 13.67–81.69 37.18 ± 12.82 34.07 2.87–336.85
U 0.23–1.31 0.65 ± 0.22 0.62 0.35–7.87
C 0.03–0.79 0.23 ± 0.16 0.20 0.03–9.69
5mU 0.20–1.67 0.74 ± 0.26 0.71 0.27–7.50
*1 0.69–6.47 2.55 ± 1.09 2.38 1.15–31.20
I 0.09–0.99 0.31 ± 0.16 0.29 0.13–4.35
*2 0.48–10.40 1.57 ± 1.04 1.39 0.86–16.71
N4aC 0.15–1.89 0.84 ± 0.33 0.76 0.05–7.37
G 0.09–2.93 1.06 ± 0.46 0.95 0.27–7.94
*3 0.31–4.49 0.83 ± 0.48 0.70 0.43–8.81
A 0.06–1.14 0.46 ± 0.21 0.43 0.06–2.94
*4 0.65–3.44 1.54 ± 0.55 1.45 0.76–11.67
*5 0.01–0.95 0.32 ± 0.16 0.29 0.01–3.06
*6 0.18–2.33 0.62 ± 0.28 0.54 0.04–4.90
dmG 0.93–5.70 2.54 ± 0.98 2.29 0.58–23.22
6mA 0.08–2.06 0.41 ± 0.24 0.39 0.04–8.68
X 0.48–6.31 1.35 ± 0.80 1.17 0.24–10.50
1mA 0.65–4.91 2.14 ± 0.78 1.95 0.78–45.78
*dhU 2.36–30.64 9.02 ± 3.78 8.12 4.14–71.17

s = no significance.
– adenosine (A), 13 – unidentified metabolite *4 (*4), 14 – unidentified metabolite
6-methyladenosine (6 mA), 18 – xanthosine (X), 19 – 1-methyladenosine (1 mA).
S, pH 6.7; 25 kV voltage, 30 ◦C temperature during analysis; injection 5 s × 0.5 psi;

dard deviations for each metabolite) [6,26], and the percent of
cancer patients with the metabolite level above this cutoff level is
calculated and categorized as elevated (Table 1). An elevated level
of all the compounds was observed at ca. 20% of cancer subjects,
varying individually between metabolites from 12.5% for adenosine
to 33.75% for inosine. Therefore, none of the established metabo-
lite cutoff levels could be alone used as an upper non-cancer level
to discriminate cancer from non-cancer patients. This observation
underlies the necessity to measure more than one nucleoside to

evaluate the status of a subject and is in agreement with previ-
ous studies undertaken for different types of malignant diseases
[6,12,26].

The dependence of nucleoside profiles on such factors like age
and gender was also examined (Table 2). No statistically signif-

rogenital cancer patients and non-cancer controls.

atients (n = 160) Elevated level (%) p-value Significance

Mean ± S.D. Median

60.12 ± 47.44 44.42 23.75 0.0000 <0.0001
1.17 ± 0.98 0.91 33.12 0.0000 <0.0001
0.37 ± 0.81 0.23 13.75 0.1315 ns
1.23 ± 1.08 0.94 25.62 0.0000 <0.0001
4.30 ± 3.88 3.20 25.00 0.0000 <0.0001
0.59 ± 0.51 0.44 33.75 0.0000 <0.0001
2.67 ± 2.22 1.91 16.87 0.0000 <0.0001
1.27 ± 0.98 0.99 25.00 0.0001 <0.0001
1.49 ± 1.21 1.10 18.13 0.0098 <0.01
1.44 ± 1.19 1.06 20.00 0.0000 <0.0001
0.57 ± 0.44 0.45 12.50 0.2659 ns
2.51 ± 1.83 1.89 25.62 0.0000 <0.0001
0.48 ± 0.44 0.37 17.50 0.0004 <0.0005
0.96 ± 0.73 0.75 21.87 0.0000 <0.0001
4.10 ± 3.28 3.01 19.38 0.0000 <0.0001
0.68 ± 0.84 0.46 18.75 0.0008 <0.001
2.13 ± 1.56 1.59 17.50 0.0000 <0.0001
3.37 ± 4.23 2.38 19.38 0.0002 <0.0005

14.07 ± 11.05 10.36 20.00 0.0000 <0.0001
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ig. 2. Radar plot of cancer and non-cancer mean values drawn based on each mean
evel of each metabolite normalized to the corresponding metabolite in the non-
ancer group (metabolite symbols as in Fig. 1).

cant difference at p < 0.01 is observed between two age groups
elected from the non-cancer group. However, lower levels of all the
etabolites were noticed in men in comparison to women. Inter-

ender levels changes are statistically significant (p < 0.01) for 14
ucleosides. Changes in nucleoside levels are probably connected
ith inter-gender hormonal changes and ca. 1.2 times higher uri-
ary creatinine day-extraction in men than in women – a result of
ifferent body muscle content [27]. Other factor as body mass index
BMI) was also included in our analysis where nucleosides profiles
f non-cancer subjects with BMI lower and higher than 25 kg/m2

ere compared. No statistically relevant changes in nucleosides
evels were obtained (data not shown).

.3. Unsupervised data analysis of urinary nucleoside profiles
Before principal component analysis (PCA) metabolite levels
ere autoscaled to remove the dependence of the rank of the
etabolites on the average concentration and the magnitude of

he changes (Section 2). Results of PCA support observations pro-

able 2
ndividual nucleoside/creatinine ratios [�mol nucleoside/mM creatinine] in urine of non-

Metabolite Non-cancer controls (n = 96)

>40 years old (n = 64) ≤40 years old (n = 32) p-value Sign
Mean ± S.D. Mean ± S.D.

pU 36.18 ± 12.11 39.20 ± 14.13 0.3469 ns
U 0.63 ± 0.20 0.70 ± 0.26 0.3509 ns
C 0.23 ± 0.15 0.24 ± 0.16 0.7915 ns
5mU 0.71 ± 0.24 0.81 ± 0.30 0.1762 ns
*1 2.46 ± 0.97 2.71 ± 1.30 0.5599 ns
I 0.29 ± 0.16 0.35 ± 0.17 0.0872 ns
*2 1.42 ± 0.46 1.87 ± 1.67 0.1943 ns
N4aC 0.78 ± 0.29 0.94 ± 0.37 0.0278 <0.0
G 0.83 ± 0.54 0.83 ± 0.34 0.5289 ns
*3 1.07 ± 0.49 1.05 ± 0.40 0.9256 ns
A 0.44 ± 0.19 0.50 ± 0.24 0.3672 ns
*4 1.51 ± 0.53 1.59 ± 0.61 0.7033 ns
*5 0.29 ± 0.12 0.38 ± 0.20 0.0345 ns
*6 0.64 ± 0.30 0.59 ± 0.24 0.4555 ns
dmG 2.48 ± 0.95 2.64 ± 1.04 0.4416 ns
6mA 0.40 ± 0.26 0.43 ± 0.19 0.2194 ns
X 1.22 ± 0.57 1.59 ± 1.09 0.0803 ns
1mA 2.08 ± 0.77 2.25 ± 0.80 0.3430 ns
*dhU 8.85 ± 4.03 9.37 ± 3.25 0.3123 ns

s = no significance.
Biomedical Analysis 53 (2010) 1305–1312 1309

vided by univariate data analysis (Fig. 3a and b). There is a fold
change between profiles belonging to different groups and this
change is generally reflected by the first principal component (PC1)
with nearly 75% of data variance explained. At PC1/PC2 and PC1/PC2
score plots (Fig. 3a and b, respectively) the distribution of profiles
from the cancer and the non-cancer groups is consistent with the
diversity of these profiles observed in the analysis of individual
metabolite ranges. The group of samples from non-cancer subjects
is more homogeneous than group of cancer subjects and they over-
lap in some extent. All the metabolites fold change has a positive
impact on PC1 (Fig. 3c) and that is a main source in variation in
our data. Nevertheless, the distribution of profiles in the direc-
tions of PC2 (7.3% of data variance explained) and PC3 (3.9% of
data variance explained) is more dependent on the levels of indi-
vidual metabolites. PC2 is affected mostly by metabolites: cytidine,
6-methyladenosine, N4-acetylcytidine, inosine and an unidentified
metabolite *5, and PC3 is influenced by 1-methyladenosine. Inter-
estingly, according to the Human Metabolome Database (HMBD)
[28] and Schram [29], 1-methyladenosine and its unstable iso-
mer 6-methyladenosine could be connected with urogenital tract
diseases, such as chronic renal failure and different urogenital
malignancies.

Next, metabolite-metabolite relationships were investigated by
means of hierarchical cluster analysis (HCA) with a 1 minus cor-
relation coefficient (1 − r) as a distance measure (see Section 2).
Results of HCA provide three main groups of metabolites: A – ino-
sine, 6-methyladenosine and cytidine, B – 1-methyladenosine and
an unidentified metabolite *5 and C – the remaining 14 metabolites
included in the profile (Supplementary material (Fig. S1)). Levels of
the metabolites of group C are strongly positively intercorrelated.
Hence, it could be concluded that their changes are highly redun-
dant and are mainly related to the fold change of profiles between
groups of non-cancer and cancer patients. On the contrary, metabo-
lites from groups A and B are not so interdependent and their level
changes cannot be fully explained by the fold change of metabolites
from group C. This is consistent with PCA results (Fig. 3c), the more
so that a similar data transformation was done in HCA and in PCA.
3.4. Supervised data analysis of urinary nucleoside profiles

The strength of the relationship between the urinary nucleoside
profiles and the presence of cancer was determined by supervised

cancer controls in groups according to patient age and gender.

Non-cancer controls (n = 96)

ificance Women (n = 60) Men (n = 36) p-value Significance
Mean ± S.D. Mean ± S.D.

40.59 ± 12.21 31.52 ± 11.93 0.0000 <0.0001
0.70 ± 0.22 0.58 ± 0.20 0.0060 <0.01
0.27 ± 0.17 0.18 ± 0.12 0.0139 <0.05
0.78 ± 0.24 0.69 ± 0.29 0.0959 ns
2.86 ± 1.03 2.03 ± 1.00 0.0000 <0.0001
0.36 ± 0.15 0.24 ± 0.17 0.0000 <0.0001
1.75 ± 1.24 1.28 ± 0.51 0.0011 <0.005

5 0.91 ± 0.33 0.71 ± 0.28 0.0011 <0.005
0.93 ± 0.55 0.66 ± 0.26 0.0000 <0.0001
1.18 ± 0.46 0.87 ± 0.41 0.0003 <0.0005
0.52 ± 0.21 0.35 ± 0.16 0.0000 <0.0001
1.63 ± 0.58 1.38 ± 0.47 0.0227 <0.05
0.34 ± 0.16 0.28 ± 0.15 0.0201 <0.05
0.67 ± 0.30 0.55 ± 0.24 0.0109 <0.05
2.79 ± 0.96 2.11 ± 0.85 0.0000 <0.0001
0.45 ± 0.28 0.34 ± 0.16 0.0045 <0.005
1.51 ± 0.87 1.07 ± 0.56 0.0000 <0.0001
2.39 ± 0.74 1.72 ± 0.66 0.0000 <0.0001
9.85 ± 3.94 7.64 ± 3.08 0.0003 <0.0005
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Fig. 3. PCA results. (a and b) PC1/PC2 and PC1/PC3 scoreplots ( Non-cancer controls,

urogenital tract cancer patients), (c) PC1/PC2/PC3 biplot (metabolite symbols as
in Fig. 1).

Table 3
Overview of diagnostic outcomes of supervised pattern recognition analysis: p-PLS-
DA and kNN.

Parameter/model p-PLS-DA kNN

LVs/k (n) 4 (19) 3 (4)
CCR cal 81.25 69.37
CCR cal c 80 91.25
CCR cal h 82.5 47.5
CCR test 71.87 80.21
CCR test c 72.5 88.75
CCR test h 68.75 37.5
CCR total 77.73 73.44
SE (selectivity) 76.25 90
SP (specificity) 80.21 45.83
Models symbols: LVs = number of latent factors, k = number of neighbors,
n = number of metabolites included in the model, CCR = correct classification rate,
cal = calibration set, test = test set, total = all dataset, c = cancer group, h = non-cancer
group.

pattern recognition methods like the nonlinear and nonparamet-
ric k-Nearest Neighbor (kNN) method and the method of linear
and parametric partial least squares-discriminant analysis with a
probabilistic function (p-PLS-DA) [21]. The results of supervised
methods are more powerful than results of exploratory, unsu-
pervised data analysis tools as PCA (Fig. 3) because they include
information about class membership.

Before supervised pattern recognition analysis, the dataset was
divided into a calibration and a test set with the help of one of three
selection methods: random selection, the Kennard-Stone algorithm
[22,23] and the duplex algorithm [24] (see Section 2). The duplex
method, which guarantees the representativeness of both subsets
(calibration and test sets) was the most convenient in the case of our
data and was selected further. In Table 3 the diagnostic outcomes of
optimized p-PLS-DA and kNN models are shown. Correct classifica-
tion rates obtained in kNN analysis are in general lower than those
provided by p-PLS-DA. Worse kNN results are probably due to the
different diversity of groups and their partial overlapping in multi-
dimensional space (Fig. 3). The best p-PLS-DA model (model A3 in
Table 3) provides 77.3% of properly classified samples (198 of a total
of 256 samples) with 76.5% sensitivity and 80.2% specificity. That is
a major improvement in comparison to the results of the analysis
of elevated levels of individual metabolites (Table 1). Moreover, it
supports the hypothesis behind the metabolomic approach that a
group of potential biomarkers is more likely to form patterns allow-
ing for disease recognition than any single compound is able to do,
be it identified or not.

Next when the misclassified samples from the cancer group
were studied, no relation between the type or severity of disease
and the percent of misclassified patients could be further found.
Also, no dependence of model predictability on patient gender
could be identified (Table 4), in contrary to the gender dependency
found for individual metabolites (Table 2). Also, when p-PLS-DA
models were developed separately for male and female study par-
ticipants, no evident improvement in classification rates of new
models was observed (Table 4).

3.5. Analysis of metabolite-metabolite relations within individual
nucleoside profiles

In previous studies [6,12,26] the relation between the fold
change of individual urinary nucleosides and the appearance of
cancer was set. Results of our large-scale metabolomic study also

showed this relation in urogenital cancer diseases. Therefore, an
important question arises – what are the characteristics of alter-
ations in urinary nucleoside profiles between the urogenital tract
cancer group and non-cancer group and how do these alterations
impact the discrimination of the two studied groups of patients? In
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Table 4
Overview of supervised pattern recognition (p-PLS-DA) results.

Parameter/model F3 M3 N3

LVs (n) 2(19) 3 (19) 1 (19)
CCR cal 85 86.67 80
CCR cal c 83.33 76.67 70
CCR cal h 86.67 96.67 90
CCR test 80 44.79 48.95
CCR test c 100 44.22 46.25
CCR test h 73.33 83.33 62.5
CCR total 83 60.89 68.37
SE (selectivity) 87.5 50.8 58.13
SP (specificity) 80 94.4 85.42

Symbols: F – model obtained for women (156 profiles), M – model obtained for men
(100 profiles), N – model obtained for data normalized to total peak area (256 pro-
files), calibration set and test set selected with duplex algorithm (3). LVs = number of
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ataset, c = cancer group, h = non-cancer group.

ther words: is a change of urinary nucleoside profiles in urogenital
ancer diseases only a quantitative level change of all metabolites
r also a change of level ratios of metabolites?

It could be concluded that nucleoside-to-nucleoside relations
ould change in urogenital cancer diseases because not all the
etabolites are strongly positively intercorrelated (see HCA results

n Supplementary material (Fig. S1)). To establish what charac-
er the relationships have between metabolite-metabolite relations
nd the appearance of urogenital cancer, differently preprocessed
rinary nucleoside profiles were evaluated. These profiles were not
reatinine normalized but were normalized to the total peak area to
vercome the differences in the concentrations between the sam-
les (neglecting profiles’ fold change) [30,31]. In this way, the main
ocus was set on the composition of urinary nucleoside profiles
side from the magnitude of their urinary levels (urinary offset
evel). When differences in the composition of profiles between
he cancer and non-cancer groups were analyzed, significant alter-
tions (p < 0.01) in the content of nine metabolites were observed.
hese changes were in both directions, e.g. the inosine relative con-
ent was higher for cancer patients whereas the 1-methyladenosine
ontent was higher for non-cancer controls. Nevertheless, these
lterations were not sufficient to successfully discriminate urogen-
tal cancer from non-cancer patients and to build a discriminant

odel with similar predictability as the previously obtained model
3 (Table 4).

. Discussion

It has been well established that the levels of some urinary
ucleosides could be changed in malignant diseases, such as

eukemia or liver cancer [6,12,26,27]. However, it was still not clear
ow the much more complex urinary nucleoside profiles alterate

n urogenital cancer diseases and what the character and strength
f these alterations is. The results presented here demonstrate that
hanges of complex urinary nucleoside profiles are dependent upon
he presence of urogenital cancer and that these changes are both
ualitative and quantitative in nature. The metabolomic approach
pplied in exploring urinary nucleoside profiles allowed a vali-
ation of the relationship between these metabolite profiles and
rogenital cancer diseases and provided a good prediction model
or these disorders. In forthcoming studies it should be investigated
hether 76.5% sensitivity and 80.2% specificity provided by the
ptimized discriminant model of the studied urinary nucleoside
rofiles might be successfully employ in the diagnosis of urogen-

tal cancer diseases. The answer to this will be positive when a
igh diversity of cases included and hence the possible method
niversality will be considered. The limited number and diagnos-
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tic power of currently used diagnostic tools in urogenital cancer
diseases [32,33] could be overcome by the metabolomic approach
and nucleoside profiles. The presented approach has already been
submitted to obtain a patent. Hopefully, the presented study is a
step forward to finally apply the dependency of urinary nucleoside
profiles to urogenital tract cancer detection in clinical practice. Nev-
ertheless, larger groups of patients and more precise information
on factors which may affect the urinary nucleoside profiles (e.g.
coexisting diseases or applied cancer therapy) have to be included
in further research to fully validate the postulated relationship
between the urinary nucleoside profiles and the appearance of uro-
genital tract cancer.

In this paper, a study of urinary nucleoside profiles by the
metabolomic approach including the analytical procedure specific
to nucleosides and the extensive data analysis of collected metabo-
lite profiles is comprehensively described. The used approach
provided new essential information about the relations between
changes of urinary nucleoside profiles and the presence of urogen-
ital cancer diseases which could be employed in the discrimination
of cancer subjects from healthy controls.
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312 E. Szymańska et al. / Journal of Pharmaceuti

12] G. Xu, H.M. Liebich, Normal and modified nucleosides in urine as potential
tumor markers determined by MEKC and HPLC, Am. Clin. Lab. 3 (2001) 22–32.

13] C.W. Gehrke, K.C. Kuo, G.E. Davis, R.D. Suits, T.P. Waalkes, E. Borek, Quanti-
tative high-performance liquid chromatography of nucleosides in biological
materials, J. Chromatogr. 150 (1978) 455–476.

14] Y. Zheng, G. Xu, J. Yang, X. Zhao, T. Pang, H. Kong, Determination of urinary
nucleosides by direct injection and coupled-column high-performance liquid
chromatography, J. Chromatogr. B 819 (2005) 85–90.

15] S.-H. Cho, B.H. Jung, S.H. Lee, W.-Y. Lee, G. Kong, B.C. Chung, Direct
determination of nucleosides in the urine of patients with breast cancer
using column-switching liquid chromatography-tandem mass spectrometry,
Biomed. Chromatogr. 20 (2006) 1229–1236.

16] K.-R. Kim, S. La, A. Kim, J.-H. Kim, H.M. Liebich, Capillary electrophoretic pro-
filing and pattern recognition analysis of urinary nucleosides from uterine
myoma and cervical cancer patients, J. Chromatogr. B 754 (2001) 97–106.

17] Y.-X. Zhang, Artificial neural networks based on principal component analy-
sis input selection for clinical pattern recognition analysis, Talanta 73 (2007)
68–75.

18] T. Helboe, S.H. Hansen, Separation of nucleosides using capillary electrochro-
matography, J. Chromatogr. A 836 (1999) 315–324.

19] M.J. Markuszewski, W. Struck, M. Waszczuk-Jankowska, R. Kaliszan,
Metabolomic approach for determination of urinary nucleosides as potential
tumor markers using electromigration techniques, Electrophoresis 31 (2010)
2300–2310.
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